Skip to content

Setters and validators for parameter values. Additionally, tools for creating sequences of parameter values and for transforming parameter values are provided.

Usage

value_validate(object, values)

value_seq(object, n, original = TRUE)

value_sample(object, n, original = TRUE)

value_transform(object, values)

value_inverse(object, values)

value_set(object, values)

Arguments

object

An object with class quant_param.

values

A numeric vector or list (including Inf). Values cannot include unknown(). For value_validate(), the units should be consistent with the parameter object's definition.

n

An integer for the (maximum) number of values to return. In some cases where a sequence is requested, the result might have less than n values. See Details.

original

A single logical. Should the range values be in the natural units (TRUE) or in the transformed space (FALSE, if applicable)?

Value

value_validate() throws an error or silently returns values if they are contained in the values of the object.

value_transform() and value_inverse() return a vector of numeric values.

value_seq() and value_sample() return a vector of values consistent with the type field of object.

Details

For sequences of integers, the code uses unique(floor(seq(min, max, length.out = n))) and this may generate an uneven set of values shorter than n. This also means that if n is larger than the range of the integers, a smaller set will be generated. For qualitative parameters, the first n values are returned.

For quantitative parameters, any values contained in the object are sampled with replacement. Otherwise, a sequence of values between the range values is returned. It is possible that less than n values are returned.

For qualitative parameters, sampling of the values is conducted with replacement. For qualitative values, a random uniform distribution is used.

Examples

library(dplyr)

penalty() %>% value_set(-4:-1)
#> Amount of Regularization (quantitative)
#> Transformer: log-10 [1e-100, Inf]
#> Range (transformed scale): [-10, 0]
#> Values: 4

# Is a specific value valid?
penalty()
#> Amount of Regularization (quantitative)
#> Transformer: log-10 [1e-100, Inf]
#> Range (transformed scale): [-10, 0]
penalty() %>% range_get()
#> $lower
#> [1] 1e-10
#> 
#> $upper
#> [1] 1
#> 
value_validate(penalty(), 17)
#> [1] FALSE

# get a sequence of values
cost_complexity()
#> Cost-Complexity Parameter (quantitative)
#> Transformer: log-10 [1e-100, Inf]
#> Range (transformed scale): [-10, -1]
cost_complexity() %>% value_seq(4)
#> [1] 1e-10 1e-07 1e-04 1e-01
cost_complexity() %>% value_seq(4, original = FALSE)
#> [1] -10  -7  -4  -1

on_log_scale <- cost_complexity() %>% value_seq(4, original = FALSE)
nat_units <- value_inverse(cost_complexity(), on_log_scale)
nat_units
#> [1] 1e-10 1e-07 1e-04 1e-01
value_transform(cost_complexity(), nat_units)
#> [1] -10  -7  -4  -1

# random values in the range
set.seed(3666)
cost_complexity() %>% value_sample(2)
#> [1] 5.533485e-04 1.480162e-05