Package index
-
parameters()
- Information on tuning parameters within an object
-
update(<parameters>)
- Update a single parameter in a parameter set
-
range_validate()
range_get()
range_set()
- Tools for working with parameter ranges
-
value_validate()
value_seq()
value_sample()
value_transform()
value_inverse()
value_set()
- Tools for working with parameter values
-
grid_regular()
grid_random()
- Create grids of tuning parameters
-
grid_space_filling()
- Space-filling parameter grids
-
all_neighbors()
- Parameter to determine which neighbors to use
-
freq_cut()
unique_cut()
- Near-zero variance parameters
-
harmonic_frequency()
- Harmonic Frequency
-
initial_umap()
values_initial_umap
- Initialization method for UMAP
-
max_times()
min_times()
- Word frequencies for removal
-
max_tokens()
- Maximum number of retained tokens
-
min_dist()
- Parameter for the effective minimum distance between embedded points
-
min_unique()
- Number of unique values for pre-processing
-
num_breaks()
- Number of cut-points for binning
-
num_hash()
signed_hash()
- Text hashing parameters
-
num_runs()
- Number of Computation Runs
-
num_tokens()
- Parameter to determine number of tokens in ngram
-
over_ratio()
under_ratio()
- Parameters for class-imbalance sampling
-
prior_slab_dispersion()
prior_mixture_threshold()
- Bayesian PCA parameters
-
token()
values_token
- Token types
-
trim_amount()
- Amount of Trimming
-
validation_set_prop()
- Proportion of data used for validation
-
vocabulary_size()
- Number of tokens in vocabulary
-
weight()
- Parameter for
"double normalization"
when creating token counts
-
weight_scheme()
values_weight_scheme
- Term frequency weighting methods
-
window_size()
- Parameter for the moving window size
-
activation()
activation_2()
values_activation
- Activation functions between network layers
-
adjust_deg_free()
- Parameters to adjust effective degrees of freedom
-
class_weights()
- Parameters for class weights for imbalanced problems
-
cost()
svm_margin()
- Support vector machine parameters
-
deg_free()
- Degrees of freedom (integer)
-
degree()
degree_int()
spline_degree()
prod_degree()
- Parameters for exponents
-
dist_power()
- Minkowski distance parameter
-
dropout()
epochs()
hidden_units()
hidden_units_2()
batch_size()
- Neural network parameters
-
Laplace()
- Laplace correction parameter
-
learn_rate()
- Learning rate
-
mixture()
- Mixture of penalization terms
-
momentum()
- Gradient descent momentum parameter
-
mtry()
mtry_long()
- Number of randomly sampled predictors
-
mtry_prop()
- Proportion of Randomly Selected Predictors
-
neighbors()
- Number of neighbors
-
num_clusters()
- Number of Clusters
-
num_comp()
num_terms()
- Number of new features
-
num_knots()
- Number of knots (integer)
-
penalty()
- Amount of regularization/penalization
-
predictor_prop()
- Proportion of predictors
-
prune_method()
values_prune_method
- MARS pruning methods
-
rate_initial()
rate_largest()
rate_reduction()
rate_steps()
rate_step_size()
rate_decay()
rate_schedule()
values_scheduler
- Parameters for neural network learning rate schedulers These parameters are used for constructing neural network models.
-
rbf_sigma()
scale_factor()
kernel_offset()
- Kernel parameters
-
regularization_method()
values_regularization_method
- Estimation methods for regularized models
-
select_features()
- Parameter to enable feature selection
-
smoothness()
- Kernel Smoothness
-
stop_iter()
- Early stopping parameter
-
summary_stat()
values_summary_stat
- Rolling summary statistic for moving windows
-
surv_dist()
values_surv_dist
- Parametric distributions for censored data
-
survival_link()
values_survival_link
- Survival Model Link Function
-
target_weight()
- Amount of supervision parameter
-
threshold()
- General thresholding parameter
-
trees()
min_n()
sample_size()
sample_prop()
loss_reduction()
tree_depth()
prune()
cost_complexity()
- Parameter functions related to tree- and rule-based models.
-
weight_func()
values_weight_func
- Kernel functions for distance weighting
-
prior_terminal_node_coef()
prior_terminal_node_expo()
prior_outcome_range()
- Parameters for BART models These parameters are used for constructing Bayesian adaptive regression tree (BART) models.
-
conditional_min_criterion()
values_test_type
conditional_test_type()
values_test_statistic
conditional_test_statistic()
- Parameters for possible engine parameters for partykit models
-
confidence_factor()
no_global_pruning()
predictor_winnowing()
fuzzy_thresholding()
rule_bands()
- Parameters for possible engine parameters for C5.0
-
extrapolation()
unbiased_rules()
max_rules()
- Parameters for possible engine parameters for Cubist
-
max_nodes()
- Parameters for possible engine parameters for randomForest
-
max_num_terms()
- Parameters for possible engine parameters for earth models
-
num_leaves()
- Possible engine parameters for lightbgm
-
regularization_factor()
regularize_depth()
significance_threshold()
lower_quantile()
splitting_rule()
ranger_class_rules
ranger_reg_rules
ranger_split_rules
num_random_splits()
- Parameters for possible engine parameters for ranger
-
scale_pos_weight()
penalty_L2()
penalty_L1()
- Parameters for possible engine parameters for xgboost
-
shrinkage_correlation()
shrinkage_variance()
shrinkage_frequencies()
diagonal_covariance()
- Parameters for possible engine parameters for sda models
-
finalize()
get_p()
get_log_p()
get_n_frac()
get_n_frac_range()
get_n()
get_rbf_range()
get_batch_sizes()
- Functions to finalize data-specific parameter ranges
-
encode_unit()
- Class for converting parameter values back and forth to the unit range
-
new_quant_param()
new_qual_param()
- Tools for creating new parameter objects
-
parameters_constr()
- Construct a new parameter set object
-
unknown()
is_unknown()
has_unknowns()
- Placeholder for unknown parameter values