
Package index
-
parameters() - Information on tuning parameters within an object
-
update(<parameters>) - Update a single parameter in a parameter set
-
lower_limit()upper_limit() - Limits for the range of predictions
-
range_validate()range_get()range_set() - Tools for working with parameter ranges
-
value_validate()value_seq()value_sample()value_transform()value_inverse()value_set() - Tools for working with parameter values
-
grid_regular()grid_random() - Create grids of tuning parameters
-
grid_space_filling() - Space-filling parameter grids
-
all_neighbors() - Parameter to determine which neighbors to use
-
freq_cut()unique_cut() - Near-zero variance parameters
-
harmonic_frequency() - Harmonic Frequency
-
initial_umap()values_initial_umap - Initialization method for UMAP
-
max_times()min_times() - Word frequencies for removal
-
max_tokens() - Maximum number of retained tokens
-
min_dist() - Parameter for the effective minimum distance between embedded points
-
min_unique() - Number of unique values for pre-processing
-
num_breaks() - Number of cut-points for binning
-
num_hash()signed_hash() - Text hashing parameters
-
num_runs() - Number of Computation Runs
-
num_tokens() - Parameter to determine number of tokens in ngram
-
over_ratio()under_ratio() - Parameters for class-imbalance sampling
-
prior_slab_dispersion()prior_mixture_threshold() - Bayesian PCA parameters
-
prop_terms() - Proportion of top predictors
-
token()values_token - Token types
-
trim_amount() - Amount of Trimming
-
validation_set_prop() - Proportion of data used for validation
-
vocabulary_size() - Number of tokens in vocabulary
-
weight() - Parameter for
"double normalization"when creating token counts
-
weight_scheme()values_weight_scheme - Term frequency weighting methods
-
window_size() - Parameter for the moving window size
-
activation()activation_2()values_activation - Activation functions between network layers
-
adjust_deg_free() - Parameters to adjust effective degrees of freedom
-
class_weights() - Parameters for class weights for imbalanced problems
-
cost()svm_margin() - Support vector machine parameters
-
deg_free() - Degrees of freedom (integer)
-
degree()degree_int()spline_degree()prod_degree() - Parameters for exponents
-
dist_power() - Minkowski distance parameter
-
dropout()epochs()hidden_units()hidden_units_2()batch_size() - Neural network parameters
-
Laplace() - Laplace correction parameter
-
learn_rate() - Learning rate
-
mixture() - Mixture of penalization terms
-
momentum() - Gradient descent momentum parameter
-
mtry()mtry_long() - Number of randomly sampled predictors
-
mtry_prop() - Proportion of Randomly Selected Predictors
-
neighbors() - Number of neighbors
-
num_clusters() - Number of Clusters
-
num_comp()num_terms() - Number of new features
-
num_knots() - Number of knots (integer)
-
penalty() - Amount of regularization/penalization
-
predictor_prop() - Proportion of predictors
-
prune_method()values_prune_method - MARS pruning methods
-
rate_initial()rate_largest()rate_reduction()rate_steps()rate_step_size()rate_decay()rate_schedule()values_scheduler - Parameters for neural network learning rate schedulers These parameters are used for constructing neural network models.
-
rbf_sigma()scale_factor()kernel_offset() - Kernel parameters
-
regularization_method()values_regularization_method - Estimation methods for regularized models
-
select_features() - Parameter to enable feature selection
-
smoothness() - Kernel Smoothness
-
stop_iter() - Early stopping parameter
-
summary_stat()values_summary_stat - Rolling summary statistic for moving windows
-
surv_dist()values_surv_dist - Parametric distributions for censored data
-
survival_link()values_survival_link - Survival Model Link Function
-
target_weight() - Amount of supervision parameter
-
threshold() - General thresholding parameter
-
trees()min_n()sample_size()sample_prop()loss_reduction()tree_depth()prune()cost_complexity() - Parameter functions related to tree- and rule-based models.
-
weight_func()values_weight_func - Kernel functions for distance weighting
-
prior_terminal_node_coef()prior_terminal_node_expo()prior_outcome_range() - Parameters for BART models These parameters are used for constructing Bayesian adaptive regression tree (BART) models.
-
conditional_min_criterion()values_test_typeconditional_test_type()values_test_statisticconditional_test_statistic() - Parameters for possible engine parameters for partykit models
-
confidence_factor()no_global_pruning()predictor_winnowing()fuzzy_thresholding()rule_bands() - Parameters for possible engine parameters for C5.0
-
extrapolation()unbiased_rules()max_rules() - Parameters for possible engine parameters for Cubist
-
max_nodes() - Parameters for possible engine parameters for randomForest
-
max_num_terms() - Parameters for possible engine parameters for earth models
-
num_leaves() - Possible engine parameters for lightbgm
-
regularization_factor()regularize_depth()significance_threshold()lower_quantile()splitting_rule()ranger_class_rulesranger_reg_rulesranger_split_rulesnum_random_splits() - Parameters for possible engine parameters for ranger
-
scale_pos_weight()penalty_L2()penalty_L1() - Parameters for possible engine parameters for xgboost
-
shrinkage_correlation()shrinkage_variance()shrinkage_frequencies()diagonal_covariance() - Parameters for possible engine parameters for sda models
-
buffer() - Buffer size
-
lower_limit()upper_limit() - Limits for the range of predictions
-
cal_method_class()cal_method_reg()values_cal_clsvalues_cal_reg - Methods for model calibration
-
finalize()get_p()get_log_p()get_n_frac()get_n_frac_range()get_n()get_rbf_range() - Functions to finalize data-specific parameter ranges
-
encode_unit() - Class for converting parameter values back and forth to the unit range
-
new_quant_param()new_qual_param() - Tools for creating new parameter objects
-
parameters_constr() - Construct a new parameter set object
-
unknown()is_unknown()has_unknowns() - Placeholder for unknown parameter values